Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e10893, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314313

ABSTRACT

The Guizhou golden monkey (Rhinopithecus brelichi) is a critically endangered wildlife species, and understanding its diet composition may be useful for assessing its feeding strategies. DNA metabarcoding was used to determine the dietary diversity of R. brelichi. DNA was extracted from 31 faecal samples and amplified chloroplast rbcL and mitochondrial COI DNA was sequenced using the Illumina NovaSeq platform. A comparative analysis of the sequences revealed that the five most abundant plant genera were Magnolia, Morinda, Viburnum, Tetradium and Eurya. In winter, R. brelichi mostly consumed shrubs, herbs and shrubs/trees according to the habit of plant genera with higher abundances comparatively. The five most abundant families in animal diet were Psychodidae, Trichinellidae, Staphylinidae, Scarabaeidae and Trichoceridae. This study is the first to show the composition of the winter animal diets of R. brelichi based on DNA metabarcoding. These results provide an important basis for understanding the diet of wild R. brelichi, which inhabits only the Fanjingshan National Nature Reserve, China.

2.
Front Microbiol ; 14: 1269492, 2023.
Article in English | MEDLINE | ID: mdl-38033571

ABSTRACT

The microbiota is essential for the extraction of energy and nutrition from plant-based diets and may have facilitated primate adaptation to new dietary niches in response to rapid environmental shifts. In this study, metagenomic sequencing technology was used to analyze the compositional structure and functional differences of the gut microbial community of Francois' langurs (Trachypithecus francoisi) under different environmental and dietary conditions. The results showed that in terms of the composition of the gut microbial community, there were significant differences among the gut microbiota of Francois' langurs (anthropogenic disturbed populations, wild populations, and captive populations) under different environmental and dietary conditions. The microbial communities with the highest abundance in Francois' langurs were Firmicutes and Bacteroidetes. Firmicutes was the most abundant phylum in anthropogenic disturbed Francois' langurs and the least abundant in captive Francois' langurs. The abundance of Bacteroidetes was highest in captive Francois' langurs. In the analysis and comparison of alpha diversity, the diversity of the gut microbiota of Francois' langurs affected by anthropogenic disturbance was the highest. The significant differences in gut microbiota between Francois' langurs in different environments and different diets were further supported by principal coordinate analysis (PCoA), with the disturbance group having a gut microbiota more similar to the wild group. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis indicated a high abundance of functional genes involved in carbohydrate metabolism, amino acid metabolism, replication and repair, cofactor and vitamin metabolism, and other amino acid metabolism pathways. Additionally, the functional genes involved in carbohydrate metabolism pathways were significantly enriched in the gut microbial community of Francois' langurs that were anthropogenic disturbed and captive. The gut microbiota of the Francois' langurs exhibited potential plasticity for dietary flexibility, and long-term food availability in captive populations leads to changes in gut microbiota composition and function. This study explored the composition and function of the gut microbiota of Francois' langurs and provided a scientific basis for understanding the physiological and health status of Francois' langurs, effectively protecting the population of wild Francois' langurs and reintroducing captive Francois' langurs into the wild.

3.
BMC Plant Biol ; 23(1): 160, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36964495

ABSTRACT

BACKGROUND: Lithophytic bryophytes grow on the rock surface, change the habitat on the rock surface through biological karstification, and provide a material basis for the growth of other plants. However, the surface calcium content of bare rock is high. The lithophytic bryophytes may have a special mechanism to adapt to the karst high calcium environment. The present study aimed to explore the physiological regulation process of karst lithophytic bryophytes under high calcium environment, and to provide scientific basis for revealing the maintenance mechanism of karst biodiversity. RESULTS: With the increase of Ca2+ concentration, the contents of Pro, SP and MDA of lithophytic bryophytes showed a downward-upward-downward trend. However, when Ca2+ ≥ 400 mmol/L, the contents of Pro and SP changed significantly at 1d, 2d, 3d, 5d and 7d with the extension of culture time, and lithophytic bryophytes died after 2 months of culture. Under different Ca2+ concentrations, the maximum SOD activity of lithophytic bryophytes is 1758.00 (U/g FW), the minimum is 92.60 (U/g FW), the maximum POD activity is 120.88 (U/g FW), and the minimum is 4.80 (U/g FW). The antioxidative activity of of Hyophila involuta are higher than that of Didymodon constrictus and Eurohypnum leptothallum, and its enzyme activity changed significantly with the increase of calcium concentration and time.At the same time, the contents of TChl, Chla, and Chlb in lithophytic bryophytes decreased with the increase of Ca2+ concentration. When Ca2+ = 400 mmol/L, the contents of TChl and Chla were the lowest, but when Ca2+ > 400 mmol/L, they began to increase. In addition, ABA is negatively correlated with TChl and Chla, and positively correlated with ROS. It shows that ABA has a certain role in regulating the adaptation of lithophytic bryophytes to high calcium environment. CONCLUSIONS: Lithophytic bryophytes have strong calcium tolerance, and their physiological response to high calcium stress is different from vascular bundle plants. The general stress principle is not applicable to lithophytic bryophytes. The response of lithophytic bryophytes to the change of Ca2+concentration is slow, showing passive response or inert response.


Subject(s)
Bryophyta , Bryopsida , Calcium , Ecosystem , Adaptation, Physiological
4.
Zoolog Sci ; 36(5): 402-409, 2019 Oct.
Article in English | MEDLINE | ID: mdl-33319964

ABSTRACT

Understanding the habitat selection and population genetic structure of an endangered species can play important roles in its protection. The Wuchuan odorous frog (Odorrana wuchuanensis) is endemic to the karst regions of southwest China. This frog is currently listed as "Critically Endangered" by the IUCN, but little is known about its habitat selection and population genetics. In this study, we conducted analyses of habitat selection with occurrence/absence sites and environmental data, and assessed the genetic structure between north and south populations in Guizhou provinces in China using three mitochondrial markers. The results revealed that the probability of this frog occupying cave habitats increased with higher average humidity in July and higher lowest temperature in January, but was negatively related to precipitation in January. Analyses of F statistics combined with analyses of median-joining haplotype networks and the phylogenetic tree showed low genetic differentiation between the two populations of O. wuchuanensis. Considering the small population size and geographic isolation because of the complex karst terrains, we suggest careful management practices are needed to protect this species.


Subject(s)
Ecosystem , Ranidae/genetics , Animals , Caves , China , Climate , Endangered Species , Genetics, Population , Genome, Mitochondrial , Phylogeny , Ranidae/physiology
5.
Mitochondrial DNA B Resour ; 1(1): 757-758, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-33473617

ABSTRACT

The complete mitochondrial genome of the Wuchuan Odorous Frog was 18,256 bp in length including 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a control region and was similar to that of typical vertebrates. The base composition was 27.89% A, 29.00% C, 15.34% G, and 27.78% T. All genes were encoded on the H-strand except ND6 and eight tRNA genes (tRNAPro, tRNAGln, tRNAAla, tRNAAsn, tRNACys, tRNATyr, tRNASer, and tRNAGlu), which were encoded on the L-strand. The phylogenetic relationship of Anura based on complete mitochondrial genomes showed that O. wuchuanesis is closest to O. margaretae with strong support and the genetic distance between Ranidae, Dicroglossidae, and Rhacophoridae was closer than others.

6.
Plant Cell Rep ; 34(6): 943-58, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25666276

ABSTRACT

KEY MESSAGE: MLNAC5 functions as a stress-responsive NAC transcription factor gene and enhances drought and cold stress tolerance in transgenic Arabidopsis via the ABA-dependent signaling pathway. NAC transcription factors (TFs) play crucial roles in plant responses to abiotic stress. Miscanthus lutarioriparius is one of Miscanthus species native to East Asia. It has attracted much attention as a bioenergy crop because of its superior biomass productivity as well as wide adaptability to different environments. However, the functions of stress-related NAC TFs remain to be elucidated in M. lutarioriparius. In this study, a detailed functional characterization of MlNAC5 was carried out. MlNAC5 was a member of ATAF subfamily and it showed the highest sequence identity to ATAF1. Subcellular localization of MlNAC5-YFP fusion protein in tobacco leaves indicated that MlNAC5 is a nuclear protein. Transactivation assay in yeast cells demonstrated that MlNAC5 functions as a transcription activator and its activation domain is located in the C-terminus. Overexpression of MlNAC5 in Arabidopsis had impacts on plant development including dwarfism, leaf senescence, leaf morphology, and late flowering under normal growth conditions. Furthermore, MlNAC5 overexpression lines in Arabidopsis exhibited hypersensitivity to abscisic acid (ABA) and NaCl. Moreover, overexpression of MlNAC5 in Arabidopsis significantly enhanced drought and cold tolerance by transcriptionally regulating some stress-responsive marker genes. Collectively, our results indicated that MlNAC5 functions as an important regulator during the process of plant development and responses to salinity, drought and cold stresses.


Subject(s)
Arabidopsis/physiology , Poaceae/genetics , Transcription Factors/genetics , Abscisic Acid/metabolism , Arabidopsis/genetics , Cell Nucleus/metabolism , Cold-Shock Response/genetics , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Salinity , Stress, Physiological/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...